GEOG 176A: Introduction to Geographic Information Systems

Lecture 17: How to Pick a GIS I

(chapter 9)

Rui Zhu
Now, imagine that you are hired in a big organization, and on the first day of your work, your manager asks your advice on choosing a GIS software for the whole organization . . . what are you gonna do?
Choosing a GIS

- The first decision for a GIS analyst is often “Which GIS?”
 - What functions should this GIS have?
 - Commercial or Open Source GIS?
 - Do you need to develop your own GIS applications?

![GIS Software Logos]
What functions should a GIS have?

Six critical perspectives:

- Data capture
- Storage
- Management
- Retrieval
- Analysis
- Display / Visualization
What functions should a GIS have?

Six critical perspectives:

- Data capture
- Storage
- Management
- Retrieval
- Analysis
- Display / Visualization
Data capture

- How do you get data into GIS?
 - Digitizing
 - Scanning
 - On-screen digitizing

- Data preprocessing
 - Topological cleaning
 - Dissolving
 - Mosaicing (zipping)
 - Rubber sheeting
 - Generalization
Dissolving

- Aggregate features based on specific attributes
Mosaicking

- A combination or merge of two or more images
Rubber sheeting

- Assign spatial reference to an image
 - The image does not have reference initially (e.g., remote sensing images or a scanned map)
 - Assign spatial reference using **control points**
Generalization

- Line generalization
 - Example: reduce the number of points for a polyline
 - Types of line generalizations
Generalization

Example: http://mapshaper.org/
Generalization

- The subway map (network map) we learned is an example of map generalization!
What functions should a GIS have?

Six critical perspectives:

- Data capture
- Storage
- Management
- Retrieval
- Analysis
- Display / Visualization
Storage

- **Data models**
 - Vector only, raster only, TIN?

- **Data formats**
 - Shapefile, jpeg, dem, tiff, …

- **Metadata handling**
 - Can this GIS store metadata?

- **Data fusion**
 - Can the GIS integrate geospatial data from different sources?
Data fusion

- Solution: Geo-ontologies!
 - This is a hot topic in current GIS research

![Diagram showing the difference between mountains in DBpedia Places and Geonames]
What functions should a GIS have?

Six critical perspectives:

- Data capture
- Management
- Retrieval
- Analysis
- Display / Visualization
Data management

- Adding, deleting, updating
 - Attributes
 - Geometries / spatial coordinates

- Generating new data from existing
 - Address matching: creating coordinates from text address (geocoding)
 - Masking: define an area using a mask, and extract the data based on this mask
 - ...

Masking

- Extract data using a mask (polygon)
What functions should a GIS have?

Six critical perspectives:

- Data capture
- Storage
- Management
- Retrieval
- Analysis
- Display / Visualization
Data retrieval

- Retrieval data from coordinates (select by location)
 - Clicking on the map
 - Using a buffer zone
- Retrieval data from attributes (select by attribute)
 - Attribute equals to a particular value
 - Attribute falls into a value range
 - ...
Click on maps to retrieve data
Buffer zone to retrieve
What functions should a GIS have?

Six critical perspectives:

● Data capture
● Storage
● Management
● Retrieval
● Analysis
● Display / Visualization
Data analysis

● General analysis:
 ○ Descriptive analysis
 ○ Inferential analysis

● Vector analysis:
 ○ Spatial pattern analysis
 ○ Clustering detection
 ○ Layer overlay

● Raster analysis:
 ○ Terrain analysis
 ○ Map algebra
Map algebra

- Local (per pixel)
- Focal (by neighboring entities)
- Zonal (by patch)
- Global (by the whole map)
Map algebra - local

E.g., sum/mean of population based on male and female

\[
\begin{bmatrix}
1 & 4 & 5 \\
5 & 3 & 2 \\
2 & 5 & 2 \\
\end{bmatrix}
+ \begin{bmatrix}
5 & 1 & 3 \\
1 & 2 & 1 \\
1 & 4 & 2 \\
\end{bmatrix}
= \begin{bmatrix}
6 & 5 & 8 \\
6 & 5 & 3 \\
3 & 9 & 4 \\
\end{bmatrix}
\]
Map algebra - focal

E.g., sum/mean of neighborhood operation (moving window)

- terrain analysis

Slope and aspect
Map algebra - zonal

E.g. the highest value (maximum) in each zone is assigned to all cells in that zone
Map algebra - global

E.g., Euclidean distance - calculate the closest distance away from the closest source
Map algebra in ArcGIS
What functions should a GIS have?

Six critical perspectives:

- Data capture
- Storage
- Management
- Retrieval
- Analysis
- Display / Visualization
Data display

● Does this GIS automatically include cartographic principles for output maps?
● Does this GIS provide cognitive suggestions for output maps?
● What formats can this GIS export maps?
Some other considerations

- Does this GIS provide
 - good documentations for users to seek helps?
 - an easy-to-use GUI?
 - “batching” commands?
 - a “language” for users to communicate with or program the system’s functions?
The more the better?

- Is a GIS with more functions always better for you? → Not necessarily!
 - More functions might confuse the end users
 - GIS with more functions are often more expensive
 - Many GISs are sold by modules
 - https://developers.arcgis.com/pricing/

- Choose a GIS based on the needs of your project / organization!
Your tasks

● Read Chapter 9
● Review slides
● Conduct lab 5: **Due on Sunday September 9th, at 23:55 pm**

Next lecture: How to pick a GIS II

○ Commercial or Open Source GIS?
○ Do you need to develop your own GIS applications?